PAUL F. HOFFMAN SERIES A Temperature-Dependent Positive Feedback on the Magnitude of Carbon Isotope Excursions
نویسندگان
چکیده
The decrease in the average magnitude of carbon isotope excursions in marine carbonates over Phanerozoic time is a longstanding unresolved problem. In addition, carbon isotope excursions commonly co-occur with oxygen isotope excursions of the same sign, implying the existence of a longstanding link between organic carbon burial fluxes and temperature. It was proposed that this connection was provided by the thermodynamic relationship between temperature and microbial respiration rates – changes in temperature drive changes in organic carbon remineralization rate and organic carbon burial efficiency. Such a mechanism provides the logic for a positive feedback affecting the magnitude of both climate changes and carbon isotope excursions. Here, we employ feedback analysis to quantify the strength of this mechanism with modifications to a simple carbon isotope mass balance framework. We demonstrate that the potential strength of this feedback is large (perhaps several permil) for plausible ranges of historical climate change. Furthermore, our results highlight the importance of the surface temperature boundary condition on the magnitude of the expected carbon isotope excursion. Comparisons of our model predictions with data from the terminal Eocene and Late Ordovician (Hirnantian) greenhouse–icehouse climate transitions suggest that these excursions might be substantially explained by such a thermodynamic microbial respiration feedback. Consequently, we hypothesize that the observed pattern of decreasing excursion magnitude toward the present might be explained at least, in part, by a decrease in the mean temperature of environments of organic carbon burial driven by long-term climate and paleogeographic trends.
منابع مشابه
Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations
Carbon cycle disturbance associated with mass extinction at the end of the Permian Period continued through the Early Triassic, an interval of approximately 5 million years. Coincidence of carbon cycle stabilization with accelerated Middle Triassic biotic recovery suggests a link between carbon cycling and biodiversity, but the cause of Early Triassic carbon isotope excursions remains poorly un...
متن کاملRelation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions.
Conspicuous global stable carbon isotope excursions that are recorded in marine sedimentary rocks of Phanerozoic age and were associated with major extinctions have generally paralleled global stable oxygen isotope excursions. All of these phenomena are therefore likely to share a common origin through global climate change. Exceptional patterns for carbon isotope excursions resulted from massi...
متن کاملLate Eocene to early Miocene ice sheet dynamics and the global carbon cycle
[1] Paired benthic foraminiferal trace metal and stable isotope records have been constructed from equatorial Pacific Ocean Drilling Program Site 1218. The records include the two largest abrupt (<1 Myr) increases in the Cenozoic benthic oxygen isotope record: Oi-1 in the earliest Oligocene ( 34 Ma) and Mi-1 in the earliest Miocene ( 23 Ma). The paired Mg/Ca and oxygen isotope records are used ...
متن کاملHigh-resolution carbon cycle and seawater temperature evolution during the Early Jurassic (Sinemurian-Early Pliensbachian)
The Early Jurassic was marked by a progressive recovery from the end-Triassic mass extinction and punctuated by recurring episodes of anoxia. These changes, associated with fluctuations in carbon isotope composition of marine carbonates, remain incompletely understood. Here we present a highresolution carbon and oxygen isotope record for the Early Jurassic based on well-preserved marine mollusk...
متن کاملDecoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event
Several positive carbon isotope excursions in Lower Paleozoic rocks, including the prominent Upper Cambrian Steptoean Positive Carbon Isotope Excursion (SPICE), are thought to reflect intermittent perturbations in the hydrosphere-biosphere system. Models explaining these secular changes are abundant, but the synchronicity and regional variation of the isotope signals are not well understood. Ex...
متن کامل